

Cloud computing Network Problem and Storage

solutions Using Ant colony optimization

1

st
 Dr.Madhurendra Kumar

Assistant Professor, CSE Department

Lingayas University,Fridabad

Email: madhurgmca@gmail.com

ABSTRACT

Cloud computing is the most network-centric distributed

computing, parallel computing and grid computing Where

successful transition to Cloud will depend on a excel

network foundation .One of the fundamental issues in this

network environment and storage I related to task

scheduling is flexible access and use of resources in

network technology where service provider connected

through Internet. Cloud computing disregards the need of

having a complete infrastructure of hardware and software

to meet users requirements and applications. Cloud users to

understand and design more of the network to which they

are exposed .This paper aim to address most of this

network problem and their possible solution using Ant

Colony Optimization (ACO) algorithm.

Keyword: Introduction, Critical Network, cloudsim, Ant

Colony Optimization (ACO), Implementation, Conclusion.

1. INTRODUCTION

Cloud computing is a model system in which resources and

services are abstracted from the underlying infrastructure

and provided on order and at scale in a multi-tenant

environment. From a networking standpoint, each service

model requires the cloud contributor to expose more or less

of the network and provide more or fewer networking

capabilities to cloud users. Every service model requires

cloud users to understand and design more of the network

to which they are exposed. Network infrastructure is most

exposed in the IaaS model and least in the SaaS model. The

essential technological difference between the operation

models is derived from the networking relationship

between the cloud client and the cloud service provider. In

a private cloud, the client and service provider are within

the same reliable network boundary. In a public cloud, they

are on various networks. In a hybrid cloud, a secured

connection may exist between the user's and provider's

networks, or the user's network may pull out into the

provider's cloud (or the reverse). Community cloud is the

structure depends on the charter and structural design of

the organizations operating the cloud. Every cloud is some

combination of a service and deployment model. In any

case of the type of cloud, however, one fact remains true:

no network means no cloud.

If no networks, users cannot access their cloud services.

Without networks, applications, data, and users cannot

move among clouds. Without networks, the infrastructure

components that must work together to create a cloud

cannot. There is an escalating proliferation of phones and

other mobile devices that are being used to access

applications and data from clouds across many various

kinds of networks. Until recently, "mobile" mainly referred

to these devices and the networks that support them with

cloud infrastructure, applications and servers also have

become mobile. It move from one part of a cloud to

another or even from one cloud to another. It is making the

network aware of and communicates to not just users

accessing the cloud, but also the applications and data in

the cloud. Extending and interconnect clouds, enabling

application and data and user mobility between clouds.

Providing consistent quality of service around the entire

network. Enforcing policies on devices, users, data, and

applications regardless of position and making the policy

Enforcement points themselves mobile. Providing a

consistent policy infrastructure, centralized control,

separation of duties, and the capability to deliver federated

sign-on and policy enforcement across clouds. Creating

self-service directory, orchestration, and automation tools

to provision all IT resources in the fabric providing the

group of metrics directly from the fabric for analysis and

response. Working with the Open Stack group to create an

open network-as-a-service (NaaS) capability for

provisioning networking resources in open cloud

environments.

2. CRITICAL NETWORK

Networking Scenario we have to change because the rise

of cloud service is changing what is happening on the

network. In new infrastructure everything is becoming

virtualized, communications is becoming programmable,

and servers and applications have mobility. New

applications use as data-intensive analytical, parallel and

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

44

IJSER © 2016
http://www.ijser.org

IJSER

clustered processing, telemedicine, remote experts, and

community cloud services.

For example, mobile services access to everything and

virtual desktops. New traffic use as predominantly server-

to-server traffic and location-independent endpoints on

both sides of a service or transaction. What we need to do

with and to data has not changed. Data still needs to travel

among the computing and storage components of an

application and user. Security still necessity be applied to

help make sure that the right devices, user and systems

have access to the right data at the exact time while

protecting against attacks, intrusions, and leaks. Different

kinds of data and traffic have various levels of importance

and network resource needs that met the whole network

with quality-of-service (QoS) capabilities.

3 CLOUDSIM

Simulation is a procedure where a program models the

activities of the system (CPU, network etc.,) by calculating

the interaction connecting its different entities using

mathematical formulas, or actually capturing and playing

back observations from a construction system. Cloudsim is

a framework developed by the GRIDS laboratory of

university of Melbourne which deals seamless modeling,

simulation and experimenting on designing cloud

computing infrastructures.

3.1 Cloudsim Charectistics

Cloudsim can be used to model data storage, host, service

brokers, scheduling and allocation policies of a large

scaled cloud platform. Hence, the researcher has used

cloudsim to model datacenters, hosts, VMs for

experimenting in simulated cloud environment. Cloud

supports VM provisioning at two levels:

(i) At the host level: It is possible to specify how much of

the whole processing power of each core will be allocated

to each VM known as VM policy Allocation.

(ii) At the VM level: The VM assigns a fixed amount of

the available processing power to the separate application

services (task units) which are hosted within its execution

engine known as VM Scheduling.

In this paper, the ACO algorithm will be used for

allocation of incoming group works to VMs at the VM

level (VM Scheduling). All the VMs in a data center not

necessary have a fixed amount of processing power but, it

can vary with different computing nodes, and then to these

VMs of different processing powers, the tasks/ requests

(application services) are assigned or allocated to the most

powerful VM and then to the lowest and so on. Hence, the

performance parameter such as overall make span time is

optimized (increasing resource utilization ratio) and the

cost will be decreased.

4. CLOUD SCHEDULING BASED ACO

 ACO is to put on the foraging behavior of ant colonies.

When an ants group tries to search for the food, they use a

special kind of chemical to communicate with each other.

That chemical is referred to as pheromone. Initially, ants

starts search their foods randomly. Once the ants find a

path to food source, they leave pheromone on the path. An

ants follow the concept to the food source by knowing

pheromone on the ground. As this process continues, most

of the ants attract to choose the shortest path as there have

been a vast amount of pheromones accumulated on the

root. The advantages of the algorithm are the use of the

positive response, inner parallelism and extensible. The

inaction phenomenon, or searching for to a certain extent,

all alone found the same result exactly, can’t further search

for the solution space, making the algorithm converge to

local optimal solution. It is clear that an ACO algorithm

can be applied to any combinatorial problem as far as it is

possible to define:

(i) Problem representation which allows ants to

incrementally build/ modify solutions.

(ii)The heuristic desirability η of edges.

(iii) A constraint satisfaction method which forces the

construction of feasible solutions.

(iv)A pheromone updating rule which specifies how to

modify pheromone trail τ on the edges of the graph.A

probabilistic transition rule of the heuristic desirability and

of pheromone trail.

In this section, cloud task scheduling based ACO algorithm
will be proposed. Decreasing the makespan of tasks is the
basic ideas from the proposed method.

4.1.Problem Representation:

For solution it is represented as a graph G= (N, E) where
the set of nodes N represents the VMs and tasks and the set
of edges E the connections between the task and VM as
shown in Figure. All ants are placed at the starting VMs
randomly. During an iteration ants build solutions to the
cloud scheduling problem by moving from one VM to
another for next task until they complete a tour (all tasks
have been allocated). Repetitions are indexed by t, 1< t<
tmax, where tmax is the maximum number of iterations
allowed

Figure 1. Problem representation of task scheduling
based ACO.

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

45

IJSER © 2016
http://www.ijser.org

IJSER

4.2 Heuristic Desirability:

 A very simple heuristic is used the inverse of expected
execution time of the task i on VM j.
Constraint Satisfaction:
The constraint satisfaction method is implemented as a
simple, short-term memory of the visited VM, in order to,
avoid visiting a VM more than once in one ACO procedure
and minimize time of the assigned couplings (task and
VM).

4.3 Pheromone Updating Rule:

It is the one typical of ant system as shown in Equations 3,
4, 5, 6 and 7. Pheromone evaporates on all edges and new
pheromone is deposited by all ants on visited edges; its
value is proportional to the quality of the solution built by
the ants.

4.4 Probabilistic Transition Rule:

The probabilistic transition rule, called random
proportional, is the one typical of ant system as shown in
Equation 1. The pseudo code of the proposed ACO
algorithm and scheduling based ACO algorithm are shown
in Algorithms 1 and 2 respectively. The main operations of
the ACO procedure are initializing pheromone, choosing
VM for next task and pheromone updating as following:

Algorithm: Scheduling based ACO algorithm

Input: Incoming Cloudlets and VMs List
Output: Print “scheduling completed and waiting

for more Cloudlets”Steps:

1. Set Cloudlet List=null and temp_List_of_Cloudlet=null

2. Put any incoming Cloudlets

in Cloudlet List in order of
their arriving time

3. Do ACO_P while Cloudlet List
not empty or there are more
incoming Cloudlets

Set n= size of VMs list
If (size of Cloudlet List greater than n)

Transfer the first arrived n Cloudlets from
Cloudlet List and put them on
temp_List_of_Cloudlet

Else
Transfer all Cloudlets.from Cloudlet List and put
them on temp_List_of_Cloudlet

End If
Execute ACO procedure with

input temp_List_of_Cloudlet and

n

End Do
4. Print “scheduling completed and waiting for more

Cloudlets”

5. Stop

4. For k:=1 to m do

Compute the length Lk of the tour described by the k-th

ant according to Equation 4.

Update the current_optimal_solution with the best

founded solution.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We assume that tasks are mutually independent i.e., there is
no precedence constraint between tasks and Tasks are not
preemptive and they cannot be interrupted or moved to
another processor during their execution.

5.1. Parameters Setting of Cloudsim

The experiments are implemented with 10 Datacenters

with 50 VMs and 100- 1000 tasks under the simulation

platform. The length of the task is from 1000 Million

Instructions (MI) to 20000 MI. The parameters setting

of cloud simulator are shown in Table 1

Table 1. Parameters setting of cloudsim

5.2. ACO Parameters Evaluation and Setting

We implemented the ACO algorithm and investigated

their relative strengths and weaknesses by

experimentation. The parameters (α, β, p, tmax, m the

number of ants and Q) considered here are those that

affect directly or indirectly the computation of the

algorithm. We tested several values for each parameter

while all the others were held constant on 100 tasks.

The default value of the parameters was α=1,β=1,

ρ=0.5, Q=100, tmax=150 and m=8.

In each experiment only one of the values was changed,

The values tested were:

α€ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, β€ {0, 0.5, 1.5, 2,2.5,

3},

ρ€ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, Q € {1, 100,

500,1000},

tmax € {50, 75, 100, 150} and m € {1, 5, 8, 10,15, 20}.

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

46

IJSER © 2016
http://www.ijser.org

IJSER

We also use the time in the cloudSim to record the

makespan. The ACO performance for different values

of parameters (α, β, p, tmax, m the number of ants and

Q) has been evaluated. The ACO performance for

different values of parameters (m: The number of ants,

tmax, Q, , αand β) are shown from Figures 2 to 7. It can

be seen that the best value of α is 0.3, the best value of

β is 1, the best value of is 0.4, the best value of Q is

100, the best value of tmax is 150 and the best values of

m is 10. In the following experiments we select the

best value for α, β, , Q and m parameters but, the value

100 is selected for the tmax parameter to reduce the

overhead of the ACO algorithm.

Table 2 shows the selected best parameters of ACO.

Figure 2. ACO performance for different values of
ant numbers.

Figure 3. ACO performance for different values of
tmax.

Figure 4. ACO performance for different values of Q.

Figure 5. ACO performance for different values of
RHO

Figure 6. ACO performance for different values of
alpha

Figure 7. ACO performance for different values of
beta.

Table 2. Selected parameters Of ACO.

5.3.Implementation Result of ACO,FCFS and RR

The following experiments, we compared the average

make span with different tasks set. The average makes

span of the ACO, RR and FCFS algorithms are shown

in Figure 8. It can be seen that, with the increase of the

quantity task, ACO takes the time less than RR and

FCFS algorithms. This indicates that ACO algorithm is

better than RR and FCFS algorithms.

Figure 8. Average makespan of FCFS, RR and ACO

With help from statistics and probability theory,

standard deviation (σ) shows how much deviation or

dispersion exists from the average (mean), or expected

value. A low standard deviation indicates that the data

points tend to be very close to the mean; high standard

deviation indicates that the data points are spread out

over a large range of values (solving stagnation

problem). Since, the standard deviation of never drops

to zero, we are assured that the algorithm actively

searches solutions which differ from the best-so-far

found, which gives it the possibility of finding better

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

47

IJSER © 2016
http://www.ijser.org

IJSER

ones. Figure 9 shows the evolution of the standard

deviation of the ACO over 10 runs.

FIGURE 9. STANDARD DEVIATION OF ACO OVER 10 RUNS

The Degree of Imbalance (DI) measures the imbalance

among VMs, which is computed by Equations 1 and 2.

 (1)

Where, TL_Tasks is the total length of tasks which are

submitted to the VMi

 (2)

Where, Tmax, Tmin and Tavg are the maximum,

minimum and average Ti respectively among all VMs.

The average DI of each algorithm with the number of

tasks varying from 100 to 1000 is shown in Figure 10. It

can be seen that the ACO can achieve better system load

balance than RR and FCFS algorithms.

Figure 10. Average DI of FCFS, RR and ACO.

6.MY PROPOSED WORK

With help from multithreading java programming we can

implement reduce the time complexity between consumer

and cloud storage.

Now we'll illustrate a classic interaction between two

threads: a storage and a Consumer. A storage thread creates

messages and places them into a queue, while a consumer

reads them out and displays them. To be realistic, we'll give

the queue a maximum depth. And to make things really

interesting, we'll have our consumer thread be lazy and run

much slower than the storage. This means that stroge

occasionally has to stop and wait for Consumer to catch up.

The example below shows storage and consumer classes.

import java.util.Vector;

class Storage extends Thread

{

 static final int MAXQUEUE = 5;

 private Vector messages = new Vector();

 public void run()

{

 try

 {

 while (true)

 {

 putMessage();

 sleep(1000);

 }

 }

 Catch(InterruptedException e)

{

System.out.println(e);

}

 }

private synchronized void putMessage()

 throws InterruptedException

{

 while (messages.size() == MAXQUEUE)

 wait();

 messages.addElement(new java.util.Date().toString()

);

 notify();

 }

 // Called by Consumer

 public synchronized String getMessage()

 throws InterruptedException

{

 notify();

 while (messages.size() == 0)

 wait();

 String message = (String)messages.firstElement();

 messages.removeElement(message);

 return message;

 }

}

class Consumer extends Thread

{

 Storage producer;

 Consumer(Storage p)

 {

 producer = p;

 }

 public void run()

{

 try

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

48

IJSER © 2016
http://www.ijser.org

IJSER

{

 while (true)

{

 String message = producer.getMessage();

 System.out.println("Got message: " + message);

 sleep(2000);

 }

 }

 catch(InterruptedException e)

{

System.out.prinln(e);

}

 }

 public static void main(String args[])

{

 Storage producer = new Storage r();

 producer.start();

 new Consumer(producer).start();

 }

}

7. CONCLUSION

Cloud computing is the most network based compute

paradigm. A successful transition to Cloud will depend

on a rock-solid network foundation that enables

organizations to transition to the cloud at their own

pace. We propose a cloud Ant colony optimization

algorithm. It does this operation in order to perform

efficient resource utilization and load balancing of the

servers. The future enhancement of this suggested

system could to modify the system performance by

reducing the number servers present in the network

using ACO algorithm for achieving cloud computing

tasks scheduling has been presented. Firstly, the best

values of parameters for ACO algorithm,

experimentally determined. Then, the ACO algorithm

in applications with the number of tasks varying from

100 to 1000 evaluated. Simulation results demonstrate

that ACO algorithm outperforms FCFS and RR

algorithms. In future work the effect of precedence

between tasks and load balancing will be considered.

7.REFERENCES

 Maximizing Network Lifetime Using EnergyEfficient Reliable Routing in Ad Hoc Networks
[1]. Antony Rowstron and Peter Druschel, “Pastry:

Scalable, decentralized object location and routing for large-

scale peer-to-peer systems”, IFIP/ACM International

Conference on Distributed SystemsPlatforms.

[2]. Buyya R., Ranjan R., and Calheiros N., “Modeling

and Simulation of Scalable Cloud Computing

Environments and the CloudSim Toolkit: Challenges and

Opportunities,” in Proceedings of the 7th High

Performance Computing and Simulation Conference,

Leipzig, Germany, pp. 1-11, 2009.

[3].Dorigo M. and Blum C., “Ant Colony Optimization

Theory: A Survey,” in Theoretical Computer Science, vol.

344, no. 2, pp. 243-278, 2005.

[4].Dorigo M., Birattari M., and Stutzel T., “Ant Colony

Optimization,” IEEE Computational Intelligence

Magazine, vol. 1, no. 4, pp. 28-39, 2006.

[5].Fangzhe C., Ren J., and Viswanathan R., “Optimal

Resource Allocation in Clouds,” in Proceedings of the 3rd

International Conferenceon Cloud Computing, Florida,

USA, pp. 418- 425, 2010.

[6].Gao K., Wang Q., and Xi L., “Reduct Algorithm

Based Execution Times Prediction in Knowledge

Discovery Cloud Computing Environment,” the

International Arab Journal of Information Technology,

vol. 11, no. 3, pp. 268- 275, 2014.

[7].Gao Y., Guan H., Qi Z., Hou Y., and Liu L., “A

Multi-Objective Ant Colony System Algorithm for

Virtual Machine Placement in Cloud Computing,”

Journal of Computer and System Sciences, vol. 79, no. 8,

pp. 1230-1242, 2013.

[8]. R. Buyya and M. Murshed. GridSim: A Toolkit for

the Modeling and Simulation of Distributed Resource

Management and Scheduling for Grid

Computing.Concurrency and Computation: Practice and

Experience, 14(13-15), Wiley Press, Nov.-Dec., 2002.

[9]. Ghalem B., Tayeb F., and Zaoui W.,“Approaches to

Improve the Resources Management in theSimulator

Cloudsim,” in Proceedings of the Conference on

Interactionand Confidence Building Measures in

Asia,Lecture Notes in Computer Science, Istanbul,Turkey,

pp. 189-196, 2010.

[10]. Hsu C. and Chen T., “Adaptive Scheduling Based on

Quality of Service in HeterogeneousEnvironments,” in

Proceedings of the IEEEInternational Conference on

Multimedia and Ubiquitous Engineering, California, USA,

pp. 1-6, 2010.

[11]. Ijaz S., Munir E., Anwar W., and Nasir W.,“Efficient

Scheduling Strategy for Task Graphs in Heterogeneous

Computing Environment,” theInternational Arab Journal of

Information Technology, vol 10, no. 5, pp. 486-492, 2013.

[12].Kessaci Y., Melab N., and Talbi E., “A Pareto- Based

GA for Scheduling HPC Applications on Distributed Cloud

Infrastructures,” in Proceedings of the IEEE International

Conference on High Performance Computing and

Simulation, Istanbul, Turkey, pp. 456-462, 2011.

[13]. Lorpunmanee S., Sap M., Abdul A., andChompoo C.,

“An Ant Colony Optimization forDynamic Job Scheduling

in Grid Environment,”in Proceedings of World Academy of

Science, English and Technology, 2007.

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

49

IJSER © 2016
http://www.ijser.org

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

50

IJSER © 2016
http://www.ijser.org

IJSER

